
this is a new chapter   1

getting started1

Diving In

Android has taken the world by storm.�
Everybody wants a smartphone or tablet, and Android devices are hugely popular. In this

book, we’ll teach you how to develop your own apps, and we’ll start by getting you to

build a basic app and run it on an Android Virtual Device. Along the way, you’ll meet some

of the basic components of all Android apps, such as activities and layouts. All you

need is a little Java know-how...

lenovo
Highlight

2   Chapter 1

android overview

Welcome to Androidville
Android is the world’s most popular mobile platform. At the
last count, there were over two billion active Android devices
worldwide, and that number is growing rapidly.

Android is a comprehensive open source platform based
on Linux and championed by Google. It’s a powerful
development framework that includes everything you need
to build great apps using a mix of Java and XML. What’s
more, it enables you to deploy those apps to a wide variety of
devices—phones, tablets, and more.

So what makes up a typical Android app?

Layouts
tell Android
what the
screens in
your app
look like.

Layouts define what each screen
looks like
A typical Android app is composed of one
or more screens. You define what each
screen looks like using a layout to define its
appearance. Layouts are usually defined in
XML, and can include GUI components such
as buttons, text fields, and labels.

Activities define what the app
does
Layouts only define the appearance of the app.
You define what the app does using one or
more activities. An activity is a special Java
class that decides which layout to use and
tells the app how to respond to the user. As
an example, if a layout includes a button, you
need to write Java code in the activity to define
what the button should do when you press it.

Sometimes extra resources are needed too
In addition to activities and layouts, Android apps often need
extra resources such as image files and application data. You
can add any extra files you need to the app.

Android apps are really just a bunch of files in particular
directories. When you build your app, all of these files get
bundled together, giving you an app you can run on your
device.

We’re going to build our
Android apps using a mixture
of Java and XML. We’ll
explain things along the way,
but you’ll need to have a fair
understanding of Java to get
the most out of this book.

Activities define
what the app
should do.

Resources
can include
sound and
image files.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

you are here 4   3

getting started

Applications

Home Contacts Phone Browser ...

Application Framework
Activity
Manager

Window
Manager

Content
Providers

View
System

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

Notification
Manager

Libraries

OpenGL |
ES FreeType WebKit

Surface
Manager

Media
Framework SQLite

SGL SSL libc

Android Runtime

Core
Libraries

Linux Kernel
Flash Memory

Driver
Camera
Driver

Binder (IPC)
Driver

Display
Driver

Audio
Drivers

WiFi
Driver

Power
Management

Keypad
Driver

Android comes with a
set of core applications
such as Contacts, Phone,
Calendar, and a browser.

When you build apps, you
have access to the same
APIs used by the core
applications. You use
these APIs to control
what your app looks like
and how it behaves.

Underneath the
application framework
lies a set of C and C++
libraries. These libraries
get exposed to you
through the framework
APIs.

Underneath everything
else lies the Linux kernel.
Android relies on the
kernel for drivers, and
also core services such
as security and memory
management.

The Android
runtime
comes with a
set of core
libraries that
implement
most of
the Java
programming
language.
Each Android
app runs
in its own
process.

The Android platform dissected
The Android platform is made up of a number of
different components. It includes core applications such
as Contacts, a set of APIs to help you control what your
app looks like and how it behaves, and a whole load of
supporting files and libraries. Here’s a quick look at how
they all fit together:

		� Don’t worry if this seems
like a lot to take in.

We’re just giving you an
overview of what’s included in

the Android platform. We’ll explain the different
components in more detail as and when we
need to.

The great news is that all of the powerful Android libraries
are exposed through the APIs in the application framework,
and it’s these APIs that you use to create great Android
apps. All you need to begin is some Java knowledge and a
great idea for an app.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

4   Chapter 1

steps

Here’s what we’re going to do
So let’s dive in and create a basic Android app. There are just
a few things we need to do:

Set up a development environment.
We need to install Android Studio, which
includes all the tools you need to develop
Android apps.

1

Build a basic app.
We’ll build a simple app using Android
Studio that will display some sample text on
the screen.

2

Change the app.
Finally, we’ll make a few tweaks to the app we
created in step 2, and run it again.

4

Run the app in the Android emulator.
We’ll use the built-in emulator to see the app
up and running.

3

Q: Are all Android apps developed
in Java?

A: You can develop Android apps in
other languages, too. Most developers use
Java, so that’s what we’re covering in this
book.

Q: How much Java do I need to know
for Android app development?

A: You really need experience with Java
SE (Standard Edition). If you’re feeling
rusty, we suggest getting a copy of Head
First Java by Kathy Sierra and Bert Bates.

Q: Do I need to know about Swing
and AWT?

A: Android doesn’t use Swing or AWT,
so don’t worry if you don’t have Java
desktop GUI experience.

lenovo
Rectangle

lenovo
Rectangle

you are here 4   5

getting started

Your development environment
Java is the most popular language used to develop Android applications.
Android devices don’t run .class and .jar files. Instead, to improve speed
and battery performance, Android devices use their own optimized
formats for compiled code. That means that you can’t use an ordinary
Java development environment—you also need special tools to convert
your compiled code into an Android format, to deploy them to an
Android device, and to let you debug the app once it’s running.

All of these come as part of the Android SDK. Let’s take a look at
what’s included.

The Android SDK
The Android Software Development Kit contains the libraries and tools
you need to develop Android apps. Here are some of the main points:

Android Studio is a special version of IntelliJ IDEA
IntelliJ IDEA is one of the most popular IDEs for Java development.
Android Studio is a version of IDEA that includes a version of
the Android SDK and extra GUI tools to help you with your app
development.

In addition to providing you with an editor and access to the tools and
libraries in the Android SDK, Android Studio gives you templates you
can use to help you create new apps and classes, and it makes it easy to
do things such as package your apps and run them.

Set up environment
Build app
Run app
Change app

Android SDK

SDK Tools
Tools for debugging and testing,
plus other useful utilities. The
SDK also features a set of
platform dependent tools.

Documentation
So you can access the latest
API documentation offline.

SDK Platform
There’s one of these for each
version of Android.

Sample apps
If you want practical code
examples to help you understand
how to use some of the APIs, the
sample apps might help you.

Android support
Extra APIs that aren’t available
in the standard platform.

Google Play Billing
Allows you to integrate billing
services in your app.

You are here.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

6   Chapter 1

installation

Install Android Studio
Before we go any further, you need to install Android Studio on
your machine. We’re not including the installation instructions
in this book as they can get out of date pretty quickly, but you’ll
be fine if you follow the online instructions.

First, check the Android Studio system requirements here:

https://developer.android.com/sdk/installing/index.html?pkg=studio

Once you’ve installed Android Studio, open it and follow the
instructions to add the latest SDK tools and Support Libraries.

When you’re done, you should see the Android Studio welcome
screen. You’re now ready to build your first Android app.

http://developer.android.com/sdk/index.html#Requirements Google sometimes changes their
URLs. If these URLs don’t
work, search for Android Studio
and you should find them.

Set up environment
Build app
Run app
Change app

This is the Android
Studio welcome
screen. It includes a
set of options for
things you can do.

Then follow the Android Studio installation instructions here:

We’re using Android Studio version 2.3. You’ll need to use this version or above to get the most out of this book.

lenovo
Rectangle

you are here 4   7

getting started

Q: You say we’re going to use
Android Studio to build the Android
apps. Do I have to?

A: Strictly speaking, you don’t have to
use Android Studio to build Android apps.
All you need is a tool that will let you write
and compile Java code, plus a few other
tools to convert the compiled code into a
form that Android devices can run.

Android Studio is the official Android IDE,
and the Android team recommends using
it. But quite a lot of people use IntelliJ IDEA
instead.

Q: Can I write Android apps without
using an IDE?

A: It’s possible, but it’s more work. Most
Android apps are now created using a build
tool called Gradle. Gradle projects can be
created and built using a text editor and a
command line.

Q: A build tool? So is gradle like
ANT?

A: It’s similar, but Gradle is much more
powerful than ANT. Gradle can compile and
deploy code, just like ANT, but it also uses
Maven to download any third-party libraries
your code needs. Gradle also uses Groovy as
a scripting language, which means you can
easily create quite complex builds with Gradle.

Q: Most apps are built using Gradle?
I thought you said most developers use
Android Studio.

A: Android Studio provides a graphical
interface to Gradle, and also to other tools
for creating layouts, reading logs, and
debugging.

You can find out more about Gradle in
Appendix II.

Build a basic app
Now that you’ve set up your development environment, you’re
ready to create your first Android app. Here’s what the app will look
like:

This is the name
of the application.

There’ll be a small piece
of sample text right here
that Android Studio will
put in for us.

This is a very simple
app, but that’s all you
need for your very
first Android app.

lenovo
Rectangle

lenovo
Rectangle

8   Chapter 1

create project

How to build the app
Whenever you create a new app, you need to create a
new project for it. Make sure you have Android Studio
open, and follow along with us.

Set up environment
Build app
Run app
Change app

You’ve completed this step
now, so we’ve checked it off.

Click on this option to start
a new Android Studio project.

1. Create a new project
The Android Studio welcome screen gives you a number of options.
We want to create a new project, so click on the option for “Start a
new Android Studio project.”

Any projects you create
will appear here. This is our
first project, so this area is
currently empty.

you are here 4   9

getting started
Set up environment
Build app
Run app
Change app

How to build the app (continued)

2. Configure the project
You now need to configure the app by telling Android Studio what
you want to call it, what company domain to use, and where you
would like to store the files.

Android Studio uses the company domain and application name to
form the name of the package that will be used for your app. As an
example, if you give your app a name of “My First App” and use
a company domain of “hfad.com”, Android Studio will derive a
package name of com.hfad.myfirstapp. The package name
is really important in Android, as it’s used by Android devices to
uniquely identify your app.

Enter an application name of “My First App”, enter a company
domain of “hfad.com”, uncheck the option to include C++ support,
and accept the default project location. Then click on the Next
button.

	 The package
name must
stay the same
for the lifetime
of your app.

It’s a unique identifier for your
app and used to manage
multiple versions of the same
app.

The application name is shown
in the Google Play Store and
various other places, too.

All of the files for your project will be stored here.

The wizard forms the
package name by combining the application name and the company domain.

Use a company domain
of hfad.com.

Uncheck the option to include C++
support. If prompted, also uncheck
the option to include Kotlin support.

Some versions of Android
Studio may have an extra
option asking if you want
to include Kotlin support.
Uncheck this option if it’s
there.

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

10   Chapter 1

api level

How to build the app (continued)

The minimum required SDK
is the lowest version your
app will support. Your app
will run on devices with
this level API or higher. It
won’t run on devices with
a lower API.

There’s more about the
different API levels on
the next page.

Set up environment
Build app
Run app
Change app

3. Specify the minimum SDK
You now need to indicate the minimum SDK of Android your app will use.
API levels increase with every new version of Android. Unless you only want
your app to run on the very newest devices, you’ll probably want to specify one
of the older APIs.

Here, we’re choosing a minimum SDK of API level 19, which means it will be
able to run on most devices. Also, we’re only going to create a version of our
app to run on phones and tablets, so we’ll leave the other options unchecked.

When you’ve done this, click on the Next button.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

you are here 4   11

getting started

You’ve probably heard a lot of things about Android that sound
tasty, like Jelly Bean, KitKat, Lollipop, and Nougat. So what’s
with all the confectionary?

Android versions have a version number and a codename. The
version number gives the precise version of Android (e.g., 7.0),
while the codename is a more generic “friendly” name that may
cover several versions of Android (e.g., Nougat). The API level
refers to the version of the APIs used by applications. As an
example, the equivalent API level for Android version 7.1.1 is 25.

When you develop Android apps, you really need to consider
which versions of Android you want your app to be compatible
with. If you specify that your app is only compatible with the
very latest version of the SDK, you might find that it can’t be
run on many devices. You can find out the percentage of devices
running particular versions here: https://developer.android.com/
about/dashboards/index.html.

Android Versions Up Close

Most devices use
one of these APIs.

Hardly anyone uses
these versions anymore.

Version Codename API level

1.0 1

1.1 2

1.5 Cupcake 3

1.6 Donut 4

2.0–2.1 Eclair 5–7

2.2.x Froyo 8

2.3–2.3.7 Gingerbread 9–10

3.0 - 3.2 Honeycomb 11–13

4.0–4.0.4 Ice Cream Sandwich 14–15

4.1 - 4.3 Jelly Bean 16–18

4.4 KitKat 19–20

5.0–5.1 Lollipop 21–22

6.0 Marshmallow 23

7.0 Nougat 24

7.1–7.1.2 Nougat 25

lenovo
Highlight

lenovo
Rectangle

12   Chapter 1

50,000 feet

Layouts define how
the user interface is
presented.

Activities define
actions.

Activities and layouts from 50,000 feet
The next thing you’ll be prompted to do is add an activity to your project.
Every Android app is a collection of screens, and each screen is composed
of an activity and a layout.

An activity is a single, defined thing that your user can do. You
might have an activity to compose an email, take a photo, or find a contact.
Activities are usually associated with one screen, and they’re written in Java.

A layout describes the appearance of the screen. Layouts are written
as XML files and they tell Android how the different screen elements are
arranged.

Let’s look in more detail at how activities and layouts work together to
create a user interface:

<Layout>

</Layout>

The device launches
your app and creates
an activity object.

1

The user interacts
with the layout that’s
displayed on the device.

4

Now that you know a bit more about what activities and layouts are,
let’s go through the last couple of steps in the Create New Project
wizard and get it to create an activity and layout.

Activity
Device Layout

1

The activity object
specifies a layout.

2 2

The activity tells
Android to display the
layout onscreen.

3

<Layout>

</Layout>

3

The activity responds
to these interactions by
running application code.

5

The activity updates
the display...

6

DeviceUser
Activity

4
5

...which the user sees
on the device.

7
7

6

Set up environment
Build app
Run app
Change app

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Rectangle

lenovo
Rectangle

you are here 4   13

getting started
Set up environment
Build app
Run app
Change app

How to build the app (continued)

4. Add an activity
The next screen lets you choose among a series of templates you
can use to create an activity and layout. We’re going to create
an app with an empty activity and layout, so choose the Empty
Activity option and click the Next button.

There are other types
of activity you can
choose from, but for
this exercise make sure
you select the Empty
Activity option.

lenovo
Rectangle

14   Chapter 1

customize activity

5. Customize the activity
You will now be asked what you want to call the screen’s activity and layout.
Enter an activity name of “MainActivity”, make sure the option to generate a
layout file is checked, enter a layout name of “activity_main”, and then uncheck
the Backwards Compatibility (AppCompat) option. The activity is a Java class,
and the layout is an XML file, so the names we’ve given here will create a Java
class file called MainActivity.java and an XML file called activity_main.xml.

When you click on the Finish button, Android Studio will build your app.

Name the activity
“MainActivity”
and the layout
“activity_main”.
Also make sure the
option to generate
the layout is
checked.

How to build the app (continued)

Set up environment
Build app
Run app
Change app

Uncheck the Backwards
Compatibility (AppCompat) option. You’ll find out more about this setting later in the book.

you are here 4   15

getting started

You’ve just created your first Android app
So what just happened?

Set up environment
Build app
Run app
Change app

The Create New Project wizard created a project for your app,
configured to your specifications.
You defined which versions of Android the app should be compatible with, and
the wizard created all of the files and folders needed for a basic valid app.

¥

The wizard created an activity and layout with template code.
The template code includes layout XML and activity Java code, with sample

“Hello World!” text in the layout.

¥

When you finish creating your project by going through the
wizard, Android Studio automatically displays the project for
you.

Here’s what our project looks like (don’t worry if it looks
complicated—we’ll break it down over the next few pages): This is the project in Android Studio.

16   Chapter 1

folder structure

Android Studio creates
a complete folder structure for you
An Android app is really just a bunch of valid files in a particular folder structure,
and Android Studio sets all of this up for you when you create a new app. The
easiest way of looking at this folder structure is with the explorer in the leftmost
column of Android Studio.

The explorer contains all of the projects that you currently have open. To expand
or collapse folders, just click on the arrows to the left of the folder icons.

The folder structure includes
different types of files
If you browse through the folder structure, you’ll
see that the wizard has created various types of
files and folders for you:

Java and XML source files
These are the activity and layout files for
your app.

¥

Configuration files
The configuration files tell Android what’s
actually in the app and how it should run.

¥

Resource files
These include default image files for
icons, styles your app might use, and any
common String values your app might
want to look up.

¥

Android libraries
In the wizard, you specified the minimum
SDK version you want your app to be
compatible with. Android Studio makes
sure your app includes the relevant
Android libraries for that version.

¥

Let’s take a closer look at some of the key files and
folders in Androidville.

Android-generated Java files
There are some extra Java files you
don’t need to touch that Android Studio
generates for you automatically.

¥

Click on the arrow
here and choose
the Project option
to see the files and
folders that make
up your project.

This is the
name of
the project.

These files and
folders are all
included in your
project.

Click on
these
arrows
to
expand
or
collapse
the
folders.

Set up environment
Build app
Run app
Change app

lenovo
Highlight

lenovo
Highlight

you are here 4   17

getting started

app

src

MainActivity.java

main

java

com/hfad/myfirstapp

build

R.java

generated/source

r/debug

com/hfad/myfirstapp

<xml>

</xml>

AndroidManifest.xml

Useful files in your project
Android Studio projects use the Gradle build system to compile and
deploy apps. Gradle projects have a standard structure. Here are
some of the key files and folders you’ll be working with:

Every Android app must include a
file called AndroidManifest.xml
at its root. The manifest file
contains essential information
about the app, such as what
components it contains, required
libraries, and other declarations.

You can find app resources in the
res folder. For example, the layout
subfolder contains layouts, and the
values subfolder contains resource
files for values such as Strings. You
can get other types of resources
too.

MainActivity.java defines
an activity. An activity tells
Android how the app should
interact with the user.

activity_main.xml defines a
layout. A layout tells Android
how your app should look.

Every Android project needs a file
called R.java, which is created for
you and which lives in the generated/
source folder. Android uses this file
to keep track of resources in the app.

strings.xml is a String resource
file. It includes Strings such as
the app’s name and any default
text values. Other files such as
layouts and activities can look up
text values from here.

The root folder
is the name of
your project. All
the files for your
project go in here.

The src folder contains
source code you write
and edit.

The build folder contains files that
Android Studio creates for you. You
don’t usually edit anything in this folder.

MyFirstApp

res

<xml>

</xml>

layout

activity_main.xml

<xml>

</xml>

values

strings.xml

The java folder contains any
Java code you write. Any
activities you create live here.

Set up environment
Build app
Run app
Change app

The app folder is a
module in your project.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

18   Chapter 1

meet the editors

Edit code with the Android Studio editors

Set up environment
Build app
Run app
Change app

The code editor
Most files get displayed in
the code editor, which is
just like a text editor, but
with extra features such
as color coding and code
checking.

Double-click on the file
in the explorer and the
file contents appear in
the editor panel.

The design editor
If you’re editing a
layout, you have an
extra option. Rather
than edit the XML
(such as that shown on
the next page), you can
use the design editor,
which allows you to
drag GUI components
onto your layout, and
arrange them how you
want. The code editor
and design editor give
different views of the
same file, so you can
switch back and forth
between the two.

You dictate
which editor
you’re using with
these tabs.

You view and edit files using the Android Studio editors. Double-click
on the file you want to work with, and the file’s contents will appear in
the middle of the Android Studio window.

You can edit layouts using the
visual editor by dragging and
dropping components.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

you are here 4   19

getting started

Here’s the code from an example layout file (not the one Android Studio
generated for us). We know you’ve not seen layout code before, but just
see if you can match each of the descriptions at the bottom of the page to the
correct lines of code. We’ve done one to get you started.

activity_main.xml
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="16dp"

 android:paddingRight="16dp"

 android:paddingTop="16dp"

 android:paddingBottom="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.myfirstapp.MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!" />

</LinearLayout>

Make the layout the same
width and height as the

screen size on the device.

Include a <TextView> GUI
component for displaying

text.

Display the String “Hello
World!”

Make the GUI component just
large enough for its content.

Add padding to the screen
margins.

20   Chapter 1

Make the layout the same
width and height as the

screen size on the device.

Include a <TextView> GUI
component for displaying

text.

Display the String “Hello
World!”

Make the GUI component just
large enough for its content.

Add padding to the screen
margins.

activity_main.xml
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="16dp"

 android:paddingRight="16dp"

 android:paddingTop="16dp"

 android:paddingBottom="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.myfirstapp.MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!" />

</LinearLayout>

Here’s the code from an example layout file (not the one Android Studio
generated for us). We know you’ve not seen layout code before, but just
see if you can match each of the descriptions at the bottom of the page to the
correct lines of code. We’ve done one to get you started.

solution

SOLUTION

lenovo
Rectangle

you are here 4   21

getting started

Now let’s see if you can do the same thing for some activity code. This
is example code, and not necessarily the code that Android
Studio will have generated for you. Match the descriptions below
to the correct lines of code.

MainActivity.java
package com.hfad.myfirstapp;

import android.os.Bundle;

import android.app.Activity;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

MainActivity extends the
Android class

android.app.Activity.

These are Android classes
used in MainActivity.

This is the package name. Implement the onCreate()
method from the Activity
class. This method is called

when the activity is first
created.

Specify which layout to use.

22   Chapter 1

another solution

Now let’s see if you can do the same thing for some activity code. This
is example code, and not necessarily the code that Android
Studio will have generated for you. Match the descriptions below
to the correct lines of code.

SOLUTION

MainActivity.java
package com.hfad.myfirstapp;

import android.os.Bundle;

import android.app.Activity;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

)

MainActivity extends the
Android class

android.app.Activity.

These are Android classes
used in MainActivity.

This is the package name. Implement the onCreate()
method from the Activity
class. This method is called

when the activity is first
created.

Specify which layout to use.

lenovo
Rectangle

you are here 4   23

getting started

Run the app in the Android emulator
So far you’ve seen what your Android app looks like in Android
Studio and got a feel for how it hangs together. But what you
really want to do is see it running, right?

You have a couple of options when it comes to running your
apps. The first option is to run them on a physical device. But
what if you don’t have one with you, or you want to see how
your app looks on a type of device you don’t have?

In that case, you can use the Android emulator that’s built
into the Android SDK. The emulator enables you to set up one
or more Android virtual devices (AVDs) and then run your
app in the emulator as though it’s running on a physical device.

So what does the emulator look like?
Here’s an AVD running in the Android emulator. It looks just
like a phone running on your computer.

Set up environment
Build app
Run app
Change app

The Android emulator allows
you to run your app on an
Android virtual device (AVD),
which behaves just like a
physical Android device. You
can set up numerous AVDs,
each emulating a different
type of device.

The emulator recreates the
exact hardware environment
of an Android device: from its
CPU and memory through to
the sound chips and the video
display. The emulator is built
on an existing emulator called
QEMU (pronounced “queue em
you”), which is similar to other
virtual machine applications you
may have used, like VirtualBox or
VMWare.

The exact appearance and
behavior of the AVD depends on
how you’ve set up the AVD in the
first place. The AVD here is set
up to mimic a Nexus 5X, so it will
look and behave just like a Nexus
5X on your computer.

Let’s set up an AVD so that you
can see your app running in the
emulator.

Once you’ve set up an
AVD, you'll be able to
see your app running
on it. Android Studio
launches the emulator
for you.

lenovo
Highlight

lenovo
Highlight

24   Chapter 1

create avd
Set up environment
Build app
Run app
Change app

There are a few steps you need to go through in order to set up an AVD
within Android Studio. We’ll set up a Nexus 5X AVD running API level
25 so that you can see how your app looks and behaves running on this
type of device. The steps are pretty much identical no matter what type
of virtual device you want to set up.

Open the Android Virtual Device Manager
The AVD Manager allows you to set up new AVDs, and
view and edit ones you’ve already created. Open it by
selecting Android on the Tools menu and choosing AVD
Manager.

If you have no AVDs set up already, you’ll be presented
with a screen prompting you to create one. Click on the

“Create Virtual Device” button.

Click on this button
to create an AVD.

Create an Android Virtual Device

Select the
hardware
On the next screen,
you’ll be prompted
to choose a device
definition. This is
the type of device
your AVD will
emulate. You can
choose a variety of
phone, tablet, wear,
or TV devices.

We’re going to see
what our app looks
like running on a
Nexus 5X phone.
Choose Phone from
the Category menu
and Nexus 5X from
the list. Then click
the Next button.

When you
select a
device, its
details
appear
here.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

you are here 4   25

getting started

Select a system image
Next, you need to select a system image. The system image gives you an
installed version of the Android operating system. You can choose the
version of Android you want to be on your AVD.

You need to choose a system image for an API level that’s compatible with
the app you’re building. As an example, if you want your app to work on
a minimum of API level 19, choose a system image for at least API level 19.
We want our AVD to run API level 25, so choose the system image with a
release name of Nougat and a target of Android 7.1.1 (API level 25). Then
click on the Next button.

If you don’t
have this system
image installed,
you’ll be given
the option to
download it.

We’ll continue setting up the AVD on the next page.

Set up environment
Build app
Run app
Change app

Creating an AVD (continued)

lenovo
Highlight

lenovo
Rectangle

26   Chapter 1

check configuration

Verify the AVD configuration
On the next screen, you’ll be asked to verify the AVD configuration. This screen
summarizes the options you chose over the last few screens, and gives you the
option of changing them. Accept the options, and click on the Finish button.

These are the options
you chose over the
past few pages.

Your Nexus 5X AVD has been created.

The AVD Manager will create the AVD for you, and when it’s done, display it in
the AVD Manager list of devices. You may now close the AVD Manager.

Set up environment
Build app
Run app
Change app

Creating an AVD (continued)

you are here 4   27

getting started

Run the app in the emulator
Now that you’ve set up your AVD, let’s run the app on it. To do
this, choose the “Run ‘app’” command from the Run menu. When
you’re asked to choose a device, select the Nexus 5X AVD you just
created. Then click OK.

The AVD can take a few minutes to appear, so while we wait, let’s
take a look at what happens when you choose Run.

Compile, package, deploy, and run
The Run command doesn’t just run your app. It also handles all the
preliminary tasks that are needed for the app to run:

The Java source files get compiled to
bytecode.

1

An Android application package, or APK
file, gets created.
The APK file includes the compiled Java files,
along with any libraries and resources needed
by your app.

2

Assuming there’s not one already
running, the emulator gets launched
and then runs the AVD.

3

Once the emulator has been launched
and the AVD is active, the APK file is
uploaded to the AVD and installed.

4

The AVD starts the main activity
associated with the app.
Your app gets displayed on the AVD screen,
and it’s all ready for you to test out.

5

Run

APK
1

2

3
4

5

An APK file is an
Android application
package. It’s
basically a JAR
or ZIP file for
Android applications.

Java file Bytecode

Libraries Resources

APK file

Emulator

Emulator

This is the AVD we just created.

Set up environment
Build app
Run app
Change app

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

28   Chapter 1

be patient

03/13 10:45:41: Launching app

$ adb install-multiple -r /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/
split-apk/debug/dep/dependencies.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/
intermediates/split-apk/debug/slices/slice_1.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/
app/build/intermediates/split-apk/debug/slices/slice_2.apk /Users/dawng/AndroidStudioProjects/
MyFirstApp/app/build/intermediates/split-apk/debug/slices/slice_0.apk /Users/dawng/
AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/debug/slices/slice_3.apk /Users/
dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/debug/slices/slice_6.apk /
Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/debug/slices/slice_4.
apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/debug/slices/
slice_5.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/debug/
slices/slice_7.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/
debug/slices/slice_8.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/
split-apk/debug/slices/slice_9.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/outputs/
apk/app-debug.apk

Split APKs installed

$ adb shell am startservice com.hfad.myfirstapp/com.android.tools.fd.runtime.InstantRunService

$ adb shell am start -n "com.hfad.myfirstapp/com.hfad.myfirstapp.MainActivity" -a android.intent.
action.MAIN -c android.intent.category.LAUNCHER

Connected to process 2685 on device Nexus_5X_API_25 [emulator-5554]

You can watch progress in the console
It can sometimes take quite a while for the emulator to launch with your
AVD—often several minutes. If you like, you can watch what’s happening
using the Android Studio console. The console gives you a blow-by-blow
account of what the build system is doing, and if it encounters any errors,
you’ll see them highlighted in the text.

You can find the console at the bottom of the Android Studio screen
(click on the Run option at the bottom of the screen if it doesn’t appear
automatically):

Here’s the output from our console window when we ran our app:

Install the app.

The emulator launches our app by starting the main activity
for it. This is the activity the wizard created for us.

We suggest finding something else to do while waiting for the emulator to start. Like quilting, or cooking a small meal.

Set up environment
Build app
Run app
Change app

Android Studio has finished
launching the AVD we just set up.

lenovo
Highlight

you are here 4   29

getting started

Wait a bit longer, and you’ll see the app you
just created. The application name appears
at the top of the screen, and the default
sample text “Hello World!” is displayed in
the middle of the screen.

Test drive
So let’s look at what actually happens onscreen when you run
your app.

First, the emulator fires up in a separate window. The
emulator takes a while to load the AVD, but then you see
what looks like an actual Android device.

Here’s the app
running on the AVD.

The emulator
launches...

...and here’s the AVD home
screen. It looks and behaves
just like a real Nexus 5X device.

Android Studio created the
sample text “Hello World!”
without us telling it to.

This is the name of the app.

The wizard created
sample text for us.

Set up environment
Build app
Run app
Change app

lenovo
Highlight

30   Chapter 1

what happened

What just happened?
Let’s break down what happens when you run the app:

Q: You mentioned that when you create an APK file, the
Java source code gets compiled into bytecode and added to
the APK. Presumably you mean it gets compiled into Java
bytecode, right?

A: It does, but that’s not the end of the story. Things work a little
differently on Android.

The big difference with Android is that your code doesn’t actually
run inside an ordinary Java VM. It runs on the Android runtime
(ART) instead, and on older devices it runs in a predecessor to ART
called Dalvik. This means that you write your Java source code and
compile it into .class files using the Java compiler, and then the
.class files get stitched into one or more files in DEX format, which is
smaller, more efficient bytecode. ART then runs the DEX code. You
can find more details about this in Appendix III.

Q: That sounds complicated. Why not just use the normal
Java VM?

A: ART can convert the DEX bytecode into native code that can
run directly on the CPU of the Android device. This makes the app
run a lot faster, and use a lot less battery power.

Q: Is a Java virtual machine really that much overhead?

A: Yes. Because on Android, each app runs inside its own
process. If it used ordinary JVMs, it would need a lot more memory.

Q: Do I need to create a new AVD every time I create a new
app?

A: No, once you’ve created the AVD you can use it for any of
your apps. You may find it useful to create multiple AVDs in order to
test your apps in different situations. As an example, in addition to
a phone AVD you might want to create a tablet AVD so you can see
how your app looks and behaves on larger devices.

<Layout>

</Layout>

When the app gets
launched, an activity
object is created from
MainActivity.java.

2

Activity
Device Layout

2

The activity specifies
that it uses the layout
activity_main.xml.

3

3

The activity tells Android to
display the layout on the screen.
The text “Hello World!” gets displayed.

4

<Layout>

</Layout>
4

Android Studio launches the emulator,
loads the AVD, and installs the app.

1

1

In this particular
instance, we’re using
a virtual device.

Set up environment
Build app
Run app
Change app

lenovo
Rectangle

lenovo
Rectangle

you are here 4   31

getting started
Set up environment
Build app
Run app
Change app

Refine the app
Over the past several pages, you’ve built a basic Android app
and seen it running in the emulator. Next, we’re going to refine
the app.

At the moment, the app displays the sample text “Hello World!”
that the wizard put in as a placeholder. You’re going to change
that text to say something else instead. So what do we need to
change in order to achieve that? To answer that, let’s take a
step back and look at how the app is currently built.

Your app currently says
“Hello World!” but we're
going to change it to
something else instead.

<Layout>

</Layout>

MainActivity.java

activity_main.xml

The app has one activity and one layout
When we built the app, we told Android Studio how to
configure it, and the wizard did the rest. The wizard created an
activity for us, and also a default layout.

The activity controls what the app does
Android Studio created an activity for us called
MainActivity.java. The activity specifies what the app
does and how it should respond to the user.

The layout controls the app's appearance
MainActivity.java specifies that it uses the layout Android
Studio created for us called activity_main.xml. The layout
specifies what the app looks like.

We want to change the appearance of the app by changing the
text that’s displayed. This means that we need to deal with the
Android component that controls what the app looks like, so we
need to take a closer look at the layout.

Our activity
specifies what the
app does and how
it should interact
with the user.

Our layout specifies
what the app looks
like.

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

32   Chapter 1

The code editor
When you choose the code editor
option, the content of activity_main.xml
is displayed. Let’s take a closer look
at it.

the layout

What’s in the layout?
We want to change the sample “Hello World!”
text that Android Studio created for us, so let’s
start with the layout file activity_main.xml. If it
isn’t already open in an editor, open it now by
finding the file in the app/src/main/res/layout
folder in the explorer and double-clicking on it.

The design editor
As you learned earlier, there are two ways of
viewing and editing layout files in Android
Studio: through the design editor and
through the code editor.

When you choose the design option, you
can see that the sample text “Hello World!”
appears in the layout as you might expect.
But what’s in the underlying XML?

Let’s see by switching to the code editor.

You can see the design editor by choosing “Design” here.

Here’s the sample text.

The design editor

To see the code editor, click on “Text” in the bottom tab.

The code
editor

If you can’t
see the folder
structure in the
explorer, try
switching to
Project view.

Click on
this arrow
to change
how the
files and
folders are
shown.

you are here 4   33

getting started

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

 ... >

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 ... />

</android.support.constraint.ConstraintLayout>

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 ... />

The <TextView> element
describes the text in
the layout.

activity_main.xml has two elements
Below is the code from activity_main.xml that Android Studio
generated for us. We’ve left out some of the details you don’t
need to think about just yet; we’ll cover them in more detail
through the rest of the book.

Here’s our code:

As you can see, the code contains two elements.

The first is an <android.support.constraint.
ConstraintLayout> element. This is a type of layout
element that tells Android how to display components on
the device screen. There are various types of layout element
available for you to use, and you’ll find out more about these
later in the book.

The most important element for now is the second element,
the <TextView>. This element is used to display text to the
user, in our case the sample text “Hello World!”

The key part of the code within the <TextView> element
is the line starting with android:text. This is a text
property describing the text that should be displayed:

This element
determines
how
components
should be
displayed, in
this case the
“Hello World!”
text.

This is the <TextView> element.

This is the text that's being displayed.

Set up environment
Build app
Run app
Change app

Android Studio gave us more XML here, but
you don’t need to think about that yet.

This is the full path
of activity_main.xml.

<xml>
</xml>

app/src/main

activity_main.xml

MyFirstApp

res

layout

		� Don’t worry if your
layout code looks
different from ours.

Android Studio
may give you slightly different XML
depending on which version you’re using.
You don’t need to worry about this,
because from the next chapter onward
you’ll learn how to roll your own layout
code, and replace a lot of what Android
Studio gives you.

Let’s change the text to something else.

We’ve left out some of the
<TextView> XML too.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

34   Chapter 1

...

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!Sup doge"

 ... />

...

update text

Change the text here from
“Hello World!” to “Sup doge”.

Once you’ve updated the file, go to the File menu and choose the
Save All option to save your change.

The key part of the <TextView> element is this line:

android:text="Hello World!" />

android:text means that this is the text property of
the <TextView> element, so it specifies what text should be
displayed in the layout. In this case, the text that’s being displayed
is “Hello World!”

android:text="Hello World!" />
Display the text...

...“Hello World!”

Update the text displayed in the layout

To update the text that’s displayed in the layout, simply change
the value of the text property from "Hello World!" to
"Sup doge". The new code for the <TextView> should look
like this:

<xml>
</xml>

app/src/main

activity_main.xml

MyFirstApp

res

layout

Set up environment
Build app
Run app
Change app

Q: My layout code looks different from yours. Is that OK?

A: Yes, that’s fine. Android Studio may generate slightly different
code if you’re using a different version than us, but that doesn’t
really matter. From now on you’ll be learning how to create your
own layout code, and you’ll replace a lot of what Android Studio
gives you.

Q: Am I right in thinking we’re hardcoding the text that's
displayed?

A: Yes, purely so that you can see how to update text in
the layout. There’s a better way of displaying text values than
hardcoding them in your layouts, but you’ll have to wait for the next
chapter to learn what it is.

Q: The folders in my project explorer pane look different
from yours. Why’s that?

A: Android Studio lets you choose alternate views for how to
display the folder hierarchy, and it defaults to the “Android” view.
We prefer the “Project” view, as it reflects the underlying folder
structure. You can change your explorer to the “Project” view by
clicking on the arrow at the top of the explorer pane, and selecting
the “Project” option.

We’ve left out some
of the code, as all
we’re doing for now
is changing the text
that’s displayed.

We’re
using the
Project
view.

Click on
this arrow
to change
the explorer
view.

lenovo
Rectangle

lenovo
Rectangle

you are here 4   35

getting started

Take the app for a test drive
Once you’ve edited the file, try running your app in the
emulator again by choosing the “Run ‘app’” command from
the Run menu. You should see that your app now says “Sup
doge” instead of “Hello World!”

Here’s the
updated version
of our app.

The sample text now
says “Sup doge” instead
of “Hello World!”

Set up environment
Build app
Run app
Change app

You’ve now built and updated your first Android app.

36   Chapter 1

toolbox

�� Versions of Android have a version
number, API level, and code name.

�� Android Studio is a special version of
IntelliJ IDEA that interfaces with the
Android Software Development Kit
(SDK) and the Gradle build system.

�� A typical Android app is composed of
activities, layouts, and resource files.

�� Layouts describe what your app
looks like. They’re held in the app/
src/main/res/layout folder.

�� Activities describe what your app
does, and how it interacts with the
user. The activities you write are held
in the app/src/main/java folder.

�� AndroidManifest.xml contains
information about the app itself. It
lives in the app/src/main folder.

�� An AVD is an Android Virtual Device.
It runs in the Android emulator and
mimics a physical Android device.

�� An APK is an Android application
package. It’s like a JAR file for
Android apps, and contains your
app’s bytecode, libraries, and
resources. You install an app on a
device by installing the APK.

�� Android apps run in separate
processes using the Android runtime
(ART).

�� The <TextView> element is used
for displaying text.

Your Android Toolbox

You’ve got Chapter 1 under
your belt and now you’ve

added Android basic concepts
to your toolbox.

CH
AP

T
ER

 1 You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

this is a new chapter   37

I wonder what
happens if I press
the button marked

“ejector seat”?

building interactive apps2

Apps That Do Something

Most apps need to respond to the user in some way.�
In this chapter, you’ll see how you can make your apps a bit more interactive. You’ll

learn how to get your app to do something in response to the user, and how to get your

activity and layout talking to each other like best buddies. Along the way, we’ll take you

a bit deeper into how Android actually works by introducing you to R, the hidden gem

that glues everything together.

lenovo
Highlight

38   Chapter 2

beer adviser

In Chapter 1, you saw how to create an app using the Android
Studio New Project wizard, and how to change the text
displayed in the layout. But when you create an Android app,
you’re usually going to want the app to do something.

In this chapter, we’re going to show you how to create an app
that the user can interact with: a Beer Adviser app. In the app,
users can select the types of beer they enjoy, click a button, and
get back a list of tasty beers to try out.

Here’s how the app will be structured:

Let’s build a Beer Adviser app

The layout specifies what the app will
look like.
It includes three GUI components:

• A drop-down list of values called a spinner,
which allows the user to choose which type of
beer they want.

• A button that when pressed will return a
selection of beer types.

• A text field that displays the types of beer.

1

The file strings.xml includes any String
resources needed by the layout—for
example, the label of the button
specified in the layout and the types of
beer.

2

The custom Java class contains the
application logic for the app.
It includes a method that takes a type of beer as a
parameter, and returns a list of beers of this type.
The activity calls the method, passes it the type of
beer, and uses the response.

4

The activity specifies how the app
should interact with the user.
It takes the type of beer the user chooses, and
uses this to display a list of beers the user might
be interested in. It achieves this with the help of a
custom Java class.

3

<Layout>

</Layout> <resources>

</resources>

Custom Java

Activity

Layout

strings.xml

1 2

3

4

Choose your
beer type, click
the button...

...and the
app comes
up with a
list of beer
suggestions.

This is what the
layout looks like.

lenovo
Highlight

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

you are here 4   39

building interactive apps

Here’s what we’re going to do
So let’s get to work. There are a few steps you need to go
through to build the Beer Adviser app (we’ll tackle these
throughout the rest of the chapter):

Create a project.
You’re creating a brand-new app, so you’ll need to create a
new project. Just like before, you’ll need to create an empty
activity with a layout.

1

Update the layout.
Once you have the app set up, you need to amend the layout so
that it includes all the GUI components your app needs.

2

Connect the layout to the activity.
The layout only creates the visuals. To add smarts to your
app, you need to connect the layout to the Java code in your
activity.

3

Write the application logic.
You’ll add a Java custom class to the app, and use it to make
sure users get the right beer based on their selection.

4

<Layout>

</Layout>

We’ll show you the
details of how to do
this on the next page.

Layout Activity

Layout

40   Chapter 2

create project

Create the project
Let’s begin by creating the new app (the steps are similar to
those we used in the previous chapter):

Create project
Update layout
Connect activity
Write logic

The wizard will take you through these steps,
just like before. Call your application “Beer
Adviser,” make sure it uses a minimum SDK of
API 19, and then tell it to create an empty
activity called “FindBeerActivity” and a layout
called “activity_find_beer”.

�Open Android Studio and choose “Start a new Android Studio project” from
the welcome screen. This starts the wizard you saw in Chapter 1.

1

�When prompted, enter an application name of “Beer Adviser” and a
company domain of “hfad.com”, making your package name com.hfad.
beeradviser. Make sure you uncheck the option to include C++ support.

2

�We want the app to work on most phones and tablets, so choose a minimum
SDK of API 19, and make sure the option for “Phone and Tablet” is selected.
This means that any phone or tablet that runs the app must have API 19
installed on it as a minimum. Most Android devices meet this criterion.

3

�Choose an empty activity for your default activity. Call the activity
“FindBeerActivity” and the accompanying layout “activity_find_beer”.
Make sure the option to generate the layout is selected and you uncheck the
Backwards Compatibility (AppCompat) option.

4

2

3

4

Make sure you
UNCHECK the
Backwards
Compatibility
(AppCompat)
option.

Make
sure you
choose
the
Empty
Activity
option.

If your version of
Android Studio
has an option to
include Kotlin
support, uncheck
this option too.

you are here 4   41

building interactive apps

We’ve created a default activity and layout

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.beeradviser.FindBeerActivity">

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a text view" />

</LinearLayout>

This is used to display text.

These elements relate to the layout as a whole. They determine the layout width and height, any padding in the layout margins, and whether components
should be laid out vertically or horizontally.

<xml>
</xml>

app/src/main

activity_
find_beer.xml

BeerAdviser

res

layout

When you click on the Finish button, Android Studio creates a
new project containing an activity called FindBeerActivity.java and a
layout called activity_find_beer.xml.

Let’s start by changing the layout file. To do this, switch to the
Project view of Android Studio’s explorer, go to the app/src/main/
res/layout folder, and open the file activity_find_beer.xml. Then switch
to the text version of the code to open the code editor, and replace
the code in activity_find_beer.xml with the following (we’ve bolded all
the new code):

We’ve just changed the code Android Studio gave us so that
it uses a <LinearLayout>. This is used to display GUI
components next to each other, either vertically or horizontally.
If it’s vertically, they’re displayed in a single column, and if it’s
horizontally, they’re displayed in a single row. You’ll find out
more about how this works as we go through the chapter.

Any changes you make to a layout’s XML are reflected in
Android Studio’s design editor, which you can see by clicking on
the Design tab. We’ll look at this in more detail on the next page.

Click on the Text
tab to open the
code editor.

Click on the
Design tab to open
the design editor.

We’re replacing the code Android
Studio generated for us.

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

42   Chapter 2

design editor

A closer look at the design editor
The design editor presents you with a more visual way of editing
your layout code than editing XML. It features two different
views of the layouts design. One shows you how the layout will
look on an actual device, and the other shows you a blueprint of
its structure:

Create project
Update layout
Connect activity
Write logic

To the left of the design editor, there’s a palette that
contains components you can drag to your layout.
We’ll use this next.

These
are the
components
You'll find
out more
about them
later in the
book.

This list shows you the different categories of component you can add to your layout. You can click on them to filter the components displayed in the palette.

This view of the
design gives you an
idea of how your
layout will look on
an actual device.

This is the
blueprint
view, which
focuses more
on the layout's
structure.

The text view in our
layout's XML code
appears in both views
of the design editor.

You can increase the size of the
palette by clicking on this area
and dragging it downward.

If Android Studio doesn’t show
you both views of the layout, click
on the “Show Design + Blueprint”
icon in the design editor’s toolbar.

lenovo
Highlight

lenovo
Highlight

you are here 4   43

building interactive apps

Connect activity Add a button using the design editor
We’re going to add a button to our layout using the design editor. Find the
Button component in the palette, click on it, and then drag it into the
design editor so that it’s positioned above the text view. The button appears
in the layout’s design:

Changes in the design editor are reflected in the XML
Dragging GUI components to the layout like this is a convenient way of
updating the layout. If you switch to the code editor, you’ll see that adding
the button via the design editor has added some lines of code to the file:

Here’s the
Button
component.
Drag it into
the design
editor.

...

 <Button

 android:id="@+id/button"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Button" />

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a text view" />

...

There’s a new <Button>
element that describes
the new button you’ve
dragged to the layout.
We’ll look at this in
more detail over the
next few pages.

The code the design editor adds depends on
where you place the button, so don't worry if
your code looks different from ours.

Put the button above
the text. You can add
it to either view of
the design.

<xml>
</xml>

app/src/main

activity_find_beer.xml

BeerAdviser

res

layout

Create project
Update layout
Connect activity
Write logic

lenovo
Highlight

lenovo
Rectangle

44   Chapter 2

gui components are views

A button in Androidville is a pushbutton that the user can press to trigger
an action. The <Button> element includes properties controlling its
size and appearance. These properties aren’t unique to buttons—other
GUI components including text views have them too.

activity_find_beer.xml has a new button
The editor added a new <Button> element to activity_find_beer.xml:

 <Button

 android:id="@+id/button"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Button" />

 android:id="@+id/button"

 android:text="Button"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

Buttons and text views are subclasses of the same Android View class

android:id
This gives the component an identifying name. The id property
enables you to control what components do via activity code:

android:layout_width, android:layout_height
These properties specify the width and height of the component.
"wrap_content" means it should be just big enough for the
content, and "match_parent" means it should be as wide as the
layout containing it:

android:text
This tells Android what text the component should display. In the
case of <Button>, it’s the text that appears on the button:

There’s a very good reason why buttons and text views have
properties in common—they both inherit from the same Android
View class. You’ll find out more about this later in the book, but for
now, here are some of the more common properties.

android.view.View

setId(int)

...

android.widget.TextView

setText(CharSequence,
 TextView.BufferType)

...

android.widget.Button

...

The View class includes lots of
different methods. We’ll look
at this later in the book.

TextView is a
type of View...

...and Button is a type
of TextView, which means
it’s also a type of View.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Rectangle

lenovo
Rectangle

you are here 4   45

building interactive apps

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.beeradviser.FindBeerActivity">

 <Button

 android:id="@+id/button"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Button" />

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a text view" />

</LinearLayout>

A closer look at the layout code
Let’s take a closer look at the layout code, and break it down so that
you can see what it’s actually doing (don’t worry if your code looks a
little different, just follow along with us):

The LinearLayout element
The first element in the layout code is <LinearLayout>. The
<LinearLayout> element tells Android that the different GUI
components in the layout should be displayed next to each other in a
single row or column.

You specify the orientation using the android:orientation
attribute. In this example we’re using:

The
<LinearLayout>
element

This is the
button.

This is the
text view.

There are other ways of laying
out your GUI components too.
You’ll find out more about
these later in the book.

<xml>
</xml>

app/src/main

activity_find_beer.xml

BeerAdviser

res

layout

This closes the <LinearLayout> element.

Create project
Update layout
Connect activity
Write logic

so the GUI components are displayed in a single vertical column.

android:orientation="vertical"

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

46   Chapter 2

look close
Create project
Update layout
Connect activity
Write logic

The Button element
The first element is the <Button>:

...

 <Button

 android:id="@+id/button"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Button" />

...

As this is the first element inside the <LinearLayout>, it appears
first in the layout at the top of the screen. It has a layout_width
of "match_parent", which means that it should be as wide as
its parent element, the <LinearLayout>. Its layout_height
has been set to"wrap_content", which means it should be tall
enough to display its text.

The TextView element
The final element inside the <LinearLayout> is the
<TextView>:

...

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a text view" />

...

The button is displayed at
the top as it's the first
element in the XML.

The text view is displayed
underneath the button as it
comes after it in the XML.

Using a linear layout
means that GUI
components are
displayed in a single
row or column.

As this is the second element and we’ve set the linear layout’s
orientation to "vertical", it’s displayed underneath the button
(the first element). Its layout_width and layout_height are
set to "wrap_content" so that it takes up just enough space to
contain its text.

A closer look at the layout code (continued)
The <LinearLayout> contains two elements: a <Button> and
a <TextView>.

lenovo
Rectangle

lenovo
Highlight

you are here 4   47

building interactive apps

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.beeradviser.FindBeerActivity">

 <Spinner
 android:id="@+id/color"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="40dp"
 android:layout_gravity="center"
 android:layout_margin="16dp" />

 <Button

 android:id="@+id/button find_beer"
 android:layout_width="match_parent wrap_content"
 android:layout_height="wrap_content"

 android:layout_gravity="center"
 android:layout_margin="16dp"
 android:text="Button" />

 <TextView

 android:id="@+id/textView brands"
 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center"
 android:layout_margin="16dp"
 android:text="This is a text view" />

</LinearLayout>

Connect activity Changes to the XML...
You’ve seen how adding components to the design editor adds them
to the layout XML. The opposite applies too—any changes you make
to the layout XML are applied to the design.

Try this now. Update your activity_find_beer.xml code with the
following changes (highlighted in bold):

This element
displays a
spinner in the
layout.

A spinner is the
Android name for
a drop-down list
of values. It allows
you to choose a
single value from a
selection.

Update the contents of
activity_find_beer.xml
with the changes
shown here.

Do this!

Center the button
horizontally and
give it a margin.

Center the
text view and
apply a margin.

<xml>
</xml>

app/src/main

activity_
find_beer.xml

BeerAdviser

res

layout

Change the button's ID to
“find_beer”. We’ll use this later.

Change the button’s
width so it’s as wide
as its content.

Change the text view’s ID to “brands”.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Rectangle

lenovo
Rectangle

lenovo
Rectangle

48   Chapter 2

design editor

...are reflected in the design editor

This is the spinner.
This will let the
user choose a type
of beer.

A spinner provides
a drop-down list of
values. It allows you to
choose a single value
from a set of values.

GUI components such
as buttons, spinners,
and text views have
very similar attributes,
as they are all types
of View. Behind the
scenes, they all inherit
from the same Android
View class.

We’ve shown you how to add GUI components to the layout with the
aid of the design editor, and also by adding them through XML. In
general, you’re more likely to hack the XML for simple layouts to get
the results you want without using the design editor. This is because
editing the XML directly gives you more direct control over the
layout.

The user will click
on this button...

...and relevant beers
will be displayed in
the text view.

Once you’ve changed the layout XML, switch to the design
editor. Instead of a layout containing a button with a text view
underneath it, you should now see a spinner, button, and text
view centered in a single column.

A spinner is the Android term for a drop-down list of values.
When you press it, it expands to show you the list so that you
can pick a single value.

Create project
Update layout
Connect activity
Write logic

lenovo
Rectangle

you are here 4   49

building interactive apps

Connect activity Let’s take the app for a test drive
We still have more work to do on the app, but let’s see how
it’s looking so far. Save the changes you’ve made by choosing
File→Save All, then choose the “Run ‘app’” command from
the Run menu. When prompted, select the option to launch
the emulator.

Wait patiently for the app to load, and eventually it should
appear.

Try pressing the spinner. It’s not immediately obvious, but
when you press it, the spinner presents you with a drop-down
list of values—it’s just at this point we haven’t added any
values to it.

Q: My layout looks slightly different in the
AVD compared with how it looks in the design
editor. Why’s that?

A: The design editor does its best to show you
how the layout will look on a device, but it’s not
always accurate depending on what version of
Android Studio you’re using. How the layout looks
in the AVD reflects how the layout will look on a
physical device.

This is the spinner,
but it has no
values in it.

The button and text field
are underneath the spinner,
and centered horizontally.

Here’s what we’ve done so far
Here’s a quick recap of what we’ve done so far:

<Layout>

</Layout>

Activity

Layout

1

2

We’ve created a layout that specifies
what the app looks like.
It includes a spinner, a button, and a text view.

1

The activity specifies how the app
should interact with the user.
Android Studio has created an activity for us, but
we haven’t done anything with it yet.

2

Create project
Update layout
Connect activity
Write logic

The next thing we’ll do is look at replacing the hardcoded
String values for the text view and button text.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

50   Chapter 2

dealing with strings

android:text="Hello World!" />
Display the text...

...“Hello World!”

While this is fine when you’re just learning, hardcoding text isn’t the
best approach.

Suppose you’ve created an app that’s a big hit on your local Google
Play Store. You don’t want to limit yourself to just one country or
language—you want to make it available internationally and for
different languages. But if you’ve hardcoded all of the text in your
layout files, sending your app international will be difficult.

It also makes it much harder to make global changes to the text.
Imagine your boss asks you to change the wording in the app
because the company’s changed its name. If you’ve hardcoded all
of the text, this means that you need to edit a whole host of files in
order to change the text.

Hardcoding text makes localization hard

Put the text in a String resource file
A better approach is to put your text values into a String resource file
called strings.xml.

Having a String resource file makes it much easier to internationalize
your app. Rather than having to change hardcoded text values in a
whole host of different activity and layout files, you can simply replace
the strings.xml file with an internationalized version.

This approach also makes it much easier to make global changes to
text across your whole application as you only need to edit one file. If
you need to make changes to the text in your app, you only need to
edit strings.xml.

How do you use String resources?
In order to use a String resource in your layout, there are two things
you need to do:

Create the String resource by adding it to strings.xml.1

Use the String resource in your layout.2

Let’s see how this is done.

Put String values
in strings.xml
rather than
hardcoding them.
strings.xml is a
resource file used
to hold name/value
pairs of Strings.
Layouts and
activities can look
up String values
using their names.

Create project
Update layout
Connect activity
Write logicSo far, we’ve hardcoded the text we want to appear in our text views

and buttons using the android:text property:

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

you are here 4   51

building interactive apps

Create the String resource
We’re going to create two String resources, one for the text that
appears on the button, and another for the default text that appears
in the text view.

To do this, use Android Studio’s explorer to find the file strings.
xml in the app/src/main/res/values folder. Then open it by double-
clicking on it.

The file should look something like this:

<resources>

 <string name="app_name">Beer Adviser</string>

</resources>

strings.xml contains one string resource named "app_name", which
has a value of Beer Adviser. Android Studio created this String
resource for us automatically when we created the project.

<string name="app_name">Beer Adviser</string>
This indicates that this is a String resource.

This String resource has a name of “app_name”,
and a value of “Beer Adviser”.

We’re first going to add a new resource called "find_beer" that
has a value of Find Beer! To do this, edit strings.xml so that you
add it as a new line like this:

<resources>

 <string name="app_name">Beer Adviser</string>

 <string name="find_beer">Find Beer!</string>

</resources>

Then add a new resource named "brands" with a value of No
beers selected:

<resources>

 <string name="app_name">Beer Adviser</string>

 <string name="find_beer">Find Beer!</string>

 <string name="brands">No beers selected</string>

</resources>

Once you’ve updated the file, go to the File menu and choose the
Save All option to save your changes. Next, we’ll use the String
resources in our layout.

This adds a new String
resource called “find_beer”.

This will be the default
text in the text view.

Create project
Update layout
Connect activity
Write logic

<xml>
</xml>

app/src/main

strings.xml

BeerAdviser

res

values

Connect activity

lenovo
Highlight

lenovo
Rectangle

lenovo
Highlight

lenovo
Rectangle

52   Chapter 2

use strings

android:text="@string/find_beer" />

You’ve seen the android:text part of the code before; it
specifies what text should be displayed. But what does
"@string/find_beer" mean?

Let’s start with the first part, @string. This is just a way of
telling Android to look up a text value from a String resource file.
In our case, this is the file strings.xml that you just edited.

The second part, find_beer, tells Android to look up the
value of a resource with the name find_beer. So
"@string/find_beer" means “look up the String resource
with the name find_beer, and use the associated text value.”

android:text="@string/find_beer" />
Display the text...

...for the String resource find_beer.

Use the String resource in your layout
You use String resources in your layout using code like this:

�Change the line:

 android:text="Button"

to:

 android:text="@string/find_beer"

¥

�Change the line:

 android:text="TextView"

to:

 android:text="@string/brands"

¥

We want to change the button and text view elements in our
layout XML so that they use the two String resources we’ve just
added.

Go back to the layout file activity_find_beer.xml file, and make the
following code changes:

You can see the code on the next page.

Create project
Update layout
Connect activity
Write logic

	 Android
Studio
sometimes
displays the
values of

references in the code
editor in place of actual
code.

As an example, it may display
the text "Find Beer!"
instead of the real code
"@string/find_beer". Any
such substitutions should be
highlighted in the code editor.
If you click on them, or hover
over them with your mouse,
the true code will be revealed.

lenovo
Rectangle

lenovo
Rectangle

you are here 4   53

building interactive apps

...

 <Spinner

 android:id="@+id/color"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="40dp"

 android:layout_gravity="center"

 android:layout_margin="16dp" />

 <Button

 android:id="@+id/find_beer"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center"

 android:layout_margin="16dp"

 android:text="Button@string/find_beer" />

 <TextView

 android:id="@+id/brands"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center"

 android:layout_margin="16dp"

 android:text="This is a text view@string/brands" />

</LinearLayout>

This will display the value
of the find_beer String
resource on the button.

This will display the value
of the brands String
resource in the text view.

<xml>
</xml>

app/src/main

activity_find_beer.xml

BeerAdviser

res

layout

The code for activity_find_beer.xml
Here’s the updated code for activity_find_beer.xml (changes are in
bold); update your version of the file to match ours.

We didn't need to
change the spinner.
We'll look at how you
add values to it over
the next few pages.

Delete the hardcoded text.

Delete this hardcoded text too.

When you’re done, save your changes.

We’ve put a summary of adding and using String resources on
the next page.

Connect activity

54   Chapter 2

up close

String Resource Files Up Close

<resources>

 <string name="app_name">Beer Adviser</string>

 <string name="find_beer">Find Beer!</string>

 <string name="brands">No beer selected</string>

</resources>

strings.xml is the default resource file used to hold name/value pairs
of Strings so that they can be referenced throughout your app. It has
the following format:

<string name="string_name">string_value</string>

where string_name is the identifier of the String, and
string_value is the String value itself.

A layout can retrieve the value of the String using:

There are two things that allow Android to recognize strings.xml as
being a String resource file:

The file is held in the folder app/src/main/res/values.
XML files held in this folder contain simple values, such as Strings and
colors.

¥

The file has a <resources> element, which contains one or
more <string> elements.
The format of the file itself indicates that it’s a resource file containing
Strings. The <resources> element tells Android that the file contains
resources, and the <string> element identifies each String resource.

¥

The <resources> element
identifies the contents of
the file as
resources.

The <string> element
identifies the name/value
pairs as Strings.

This means that you don’t need to call your String resource file
strings.xml; if you want, you can call it something else, or split your
Strings into multiple files.

Each name/value pair takes the form:

"@string/string_name" This is the name of the
String whose value we
want to return.“@string” tells Android to look for a

String resource of this name.

lenovo
Rectangle

lenovo
Rectangle

you are here 4   55

building interactive apps

Q: Do I absolutely have to put my text
values in a String resource file such as
strings.xml?

A: It’s not mandatory, but Android gives
you warning messages if you hardcode text
values. Using a String resource file might
seem like a lot of effort at first, but it makes
things like localization much easier. It’s also
easier to use String resources to start off
with, rather than patching them in afterward.

Q: How does separating out the
String values help with localization?

A: Suppose you want your application to
be in English by default, but in French if the
device language is set to French. Rather
than hardcode different languages into your
app, you can have one String resource file
for English text, and another resource file
for French text.

Q: How does the app know which
String resource file to use?

A: Put your default English Strings
resource file in the app/src/main/res/
values folder as normal, and your French
resource file in a new folder called app/src/
main/res/values-fr. If the device is set to
French, it will use the Strings in the app/
src/main/res/values-fr folder. If the device
is set to any other language, it will use the
Strings in app/src/main/res/values.

Here’s what we’ve done so far
Here’s a quick recap of where we’ve got to:

<Layout>

</Layout> <resources>

</resources>

Activity

Layout

strings.xml

1 2

3

We’ve created a layout that specifies what the app
looks like.
It includes a spinner, a button, and a text view.

1

The file strings.xml includes the String resources we
need.
We’ve added a label for the button, and default text for the list of
suggested beer brands to try.

2

The activity specifies how the app should interact with
the user.
Android Studio has created an activity for us, but we haven’t done
anything with it yet.

3

Next we’ll look at how you add a list of beers to the spinner.

Time for a test drive
Let’s see how the app’s looking now. Save the changes you’ve
made, then choose the “Run ‘app’” command from the
Run menu. When prompted, select the option to launch the
emulator.

This time when we run the app, the text for the button and
the text view has changed to the String values we added to
strings.xml. The button says “Find Beer!” and the text view says

“No beers selected.”
The text on the button and the
text view has been changed.

lenovo
Rectangle

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

56   Chapter 2

array resources
Create project
Update layout
Connect activity
Write logicAt the moment, the layout includes a spinner, but it doesn’t have

anything in it. Whenever you use a spinner, you need to get it to
display a list of values so that the user can choose the value they want.

We can give the spinner a list of values in pretty much the same
way that we set the text on the button and the text view: by using a
resource. So far, we’ve used strings.xml to specify individual String
values. For the spinner, all we need to do is specify an array of String
values, and get the spinner to reference it.

Add values to the spinner

Adding an array resource is similar to adding a String
As you already know, you can add a String resource to strings.xml using:

<string name="string_name">string_value</string>

where string_name is the identifier of the String, and string_
value is the String value itself.

To add an array of Strings, you use the following syntax:

<string-array name="string_array_name">

 <item>string_value1</item>

 <item>string_value2</item>

 <item>string_value3</item>

 ...

</string-array>

where string_array_name is the name of the array, and
string_value1, string_value2, string_value3 are the
individual String values that make up the array.

Let’s add a string-array resource to our app that can be used by
the spinner.

This is the name of the array.

These are the values in the array. You can add as many as you need.

Resources are
noncode assets, such
as images or Strings,
used by your app.

lenovo
Highlight

lenovo
Rectangle

you are here 4   57

building interactive apps
Create project
Update layout
Connect activity
Write logic

...

 <Spinner

 android:id="@+id/color"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="40dp"

 android:layout_gravity="center"

 android:layout_margin="16dp"

 android:entries="@array/beer_colors" />
...

Get the spinner to reference a string-array
A layout can reference a string-array using similar syntax to how
it would retrieve the value of a String. Rather than use:

Use @string to reference a String, and
@array to reference an array.

"@string/string_name"

you use the syntax:

"@array/array_name"

where array_name is the name of the array.

Let’s use this in the layout. Go to the layout file activity_find_beer.xml
and add an entries attribute to the spinner like this:

This means “the entries for the
spinner come from array beer_colors”.

<xml>
</xml>

app/src/main

activity_find_beer.xml

BeerAdviser

res

layout

Add the string-array to strings.xml
To add the string-array, open up strings.xml, and add the
array like this:

...

 <string name="brands">No beer selected </string>

 <string-array name="beer_colors">

 <item>light</item>

 <item>amber</item>

 <item>brown</item>

 <item>dark</item>

 </string-array>

</resources>

Add this string-array to strings.xml.
It defines an array of Strings called
beer_colors with array items of light,
amber, brown, and dark.

<xml>
</xml>

app/src/main

strings.xml

BeerAdviser

res

values

Those are all the changes you need in order to get the spinner to
display a list of values. Let’s see what it looks like.

Connect activity

lenovo
Rectangle

lenovo
Rectangle

58   Chapter 2

test drive

Test drive the spinner
So let’s see what impact these changes have had on our app. Save
your changes, then run the app. You should get something like this:

By default
the top item in the spinner is selected. Click on

the spinner
to see its
entries.

When you click
on a value, it
gets selected.

Create project
Update layout
Connect activity
Write logic

Where we've got to
Here’s a reminder of what we’ve done so far:

<Layout>

</Layout> <resources>

</resources>

Activity

Layout

strings.xml

1 2

3

We’ve created a layout that specifies what
the app looks like.
It includes a spinner, a button, and a text view.

1

The file strings.xml includes the String
resources we need.
We’ve added a label for the button, default text for the
suggested beer brands, and an array of values for the
spinner.

2

The activity specifies how the app should
interact with the user.
Android Studio has created an activity for us, but we
haven’t done anything with it yet.

3

So what’s next?

you are here 4   59

building interactive apps

We need to make the button do something

The user chooses a type of beer
from the spinner.

The user clicks the Find Beer
button, and the layout specifies
which method to call in the
activity.

2

BeerExpert’s getBrands() method
finds matching brands for the type
of beer and returns them to the
activity as an ArrayList of Strings.

4

The activity gets a reference to
the layout text view and sets its
text value to the list of matching
beers.

5

<Layout>

</Layout>

BeerExpert

ActivityLayout

1
2

3
5

4

Device

The method in the activity
retrieves the value of the selected
beer in the spinner and passes
it to the getBrands() method
in a Java custom class called
BeerExpert.

3

getBrands("amber")
"Jack Amber"
"Red Moose"

Create project
Update layout
Connect activity
Write logic

Let’s start by getting the button to call a method.

What we need to do next is make the app react to the value
we select in the spinner when the Find Beer button is clicked.
We want our app to behave something like this:

Connect activity

After all those steps are completed, the list
is displayed on the device.

1

lenovo
Highlight

lenovo
Rectangle

60   Chapter 2

onClick attribute

Once you’ve made these changes, save the file.

Now that the layout knows which method to call in the activity,
we need to write the method. Let’s take a look at the activity.

When the button is
clicked, call the method
onClickFindBeer() in the
activity. We’ll create the
method in the activity over
the next few pages.

...

 <Button

 android:id="@+id/find_beer"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center"

 android:layout_margin="16dp"

 android:text="@string/find_beer"

 android:onClick="onClickFindBeer" />

...

Make the button call a method
Whenever you add a button to a layout, it’s likely you’ll want it to do
something when the user clicks on it. To make this happen, you need
to get the button to call a method in your activity.

To get our button to call a method in the activity when it’s clicked,
we need to make changes to two files:

android:onClick="method_name"

�Change the layout file activity_find_beer.xml.
We’ll specify which method in the activity will get called
when the button is clicked.

¥

�Change the activity file FindBeerActivity.java.
We need to write the method that gets called.

¥

Let’s start with the layout.

Use onClick to say which method the button calls
It only takes one line of XML to tell Android which method a
button should call when it’s clicked. All you need to do is add an
android:onClick attribute to the <button> element, and tell
it the name of the method you want to call:

This means “when the component is clicked, call
the method in the activity called method_name”.

Let’s try this now. Go to the layout file activity_find_beer.xml, and add a
new line of XML to the <button> element to say that the method
onClickFindBeer() should be called when the button is clicked:

Create project
Update layout
Connect activity
Write logic

<xml>
</xml>

app/src/main

activity_find_beer.xml

BeerAdviser

res

layout

lenovo
Rectangle

you are here 4   61

building interactive apps

package com.hfad.beeradviser;

import android.app.Activity;
import android.os.Bundle;

public class FindBeerActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_find_beer);
 }
}

What activity code looks like
When we first created a project for our app, we asked the wizard to create
an empty activity called FindBeerActivity. The code for this activity
is held in a file called FindBeerActivity.java. Open this file by going to the app/
src/main/java folder and double-clicking on it.

When you open the file, you’ll see that Android Studio has generated
some Java code for you. Rather than taking you through all the code that
Android Studio may (or may not) have created, we want you to replace the
code that’s currently in FindBeerActivity.java with the code shown here:

app/src/main

FindBeerActivity.java

BeerAdviser

java

com.hfad.beeradviser

Make sure class extends
the Android Activity class.

This is the onCreate() method. It’s called
when the activity is first created.

setContentView() tells Android
which layout the activity uses. In
this case, it’s activity_find_beer.

Replace the code
in your version of
FindBeerActivity.java
with the code shown
on this page.

Do this!

The above code is all you need to create a basic activity. As you can see, it’s a
class that extends the android.app.Activity class, and implements an
onCreate() method.

All activities (not just this one) have to extend the Activity class or one
of its subclasses. The Activity class contains a bunch of methods that
transform your Java class from a plain old Java class into a full-fledged, card-
carrying Android activity.

All activities also need to implement the onCreate() method. This
method gets called when the activity object gets created, and it’s used to
perform basic setup such as what layout the activity is associated with. This
is done via the setContentView() method. In the example above,
setContentView(R.layout.activity_find_beer) tells Android
that this activity uses activity_find_beer as its layout.

On the previous page, we added an onClick attribute to the button in our
layout and gave it a value of onClickFindBeer. We need to add this
method to our activity so it will be called when the button gets clicked. This
will enable the activity to respond when the user touches the button in the
user interface.

Connect activity

62   Chapter 2

onClickFindBeer()

...

import android.view.View;

public class FindBeerActivity extends Activity {

...

 //Called when the user clicks the button

 public void onClickFindBeer(View view){

 }

}

The method must be
public.

The method must have a
void return value.

The method must have a single
parameter of type View.

public void onClickFindBeer(View view) {

}

Add an onClickFindBeer() method
to the activity
The onClickFindBeer() method needs to have a particular
signature, or otherwise it won’t get called when the button specified in
the layout gets clicked. The method needs to take the following form:

Add the
onClickFindBeer()
method to
FindBeerActivity.java.

activity_find_beer.xml

<Layout>

</Layout>

FindBeerActivity.java

onClickFindBeer()

If the method doesn’t take this form, then it won’t respond when
the user presses the button. This is because behind the scenes,
Android looks for a public method with a void return value, with
a method name that matches the method specified in the layout
XML.

The View parameter in the method may seem unusual at first
glance, but there’s a good reason for it being there. The parameter
refers to the GUI component that triggers the method (in this case,
the button). As we mentioned earlier, GUI components such as
buttons and text views are all types of View.

So let’s update our activity code. Add the onClickFindBeer()
method below to your activity code (FindBeerActivity.java):

If you want a method
to respond to a button
click, it must be public,
have a void return
type, and take a single
View parameter.

Create project
Update layout
Connect activity
Write logic

app/src/main

FindBeerActivity.java

BeerAdviser

java

com.hfad.beeradviser

We're using this
class, so we need
to import it.

lenovo
Rectangle

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

you are here 4   63

building interactive apps

onClickFindBeer() needs to do something
Now that we’ve created the onClickFindBeer() method in our
activity, the next thing we need to do is get the method to do something
when it runs. Specifically, we need to get our app to display a selection of
different beers that match the beer type the user has selected.

In order to achieve this, we first need to get a reference to both the spinner
and text view GUI components in the layout. This will allow us to retrieve
the value of the chosen beer type from the spinner, and display text in the
text view.

Use findViewById() to get a reference to a view
We can get references for our two GUI components using a method called
findViewById(). This method takes the ID of the GUI component as
a parameter, and returns a View object. You then cast the return value
to the correct type of GUI component (for example, a TextView or a
Button).

Here’s how you’d use findViewById() to get a reference to the text
view with an ID of brands:

TextView brands = (TextView) findViewById(R.id.brands);

brands is a TextView, so we
have to cast it as one.

We want the view with
an ID of brands.

Create project
Update layout
Connect activity
Write logic

Take a closer look at how we specified the ID of the text view. Rather
than pass in the name of the text view, we passed in an ID of the form
R.id.brands. So what does this mean? What’s R?

R.java is a special Java file that gets generated by Android Studio
whenever you create or build your app. It lives within the app/build/
generated/source/r/debug folder in your project in a package with the same
name as the package of your app. Android uses R.java to keep track of
the resources used within the app, and among other things it enables
you to get references to GUI components from within your activity code.

If you open up R.java, you’ll see that it contains a series of inner classes,
one for each type of resource. Each resource of that type is referenced
within the inner class. As an example, R.java includes an inner class
called id, and the inner class includes a static final brands
value. Android added this code to R.java when we used the code

"@+id/brands" in our layout. The line of code:

R is a special Java class
that enables you to
retrieve references to
resources in your app.

(TextView) findViewById(R.id.brands);

uses the value of brands to get a reference to the brands text view.

		� R.java gets
generated
for you.

You never
change any of the code within
this file, but it’s useful to know
it’s there.

Connect activity

lenovo
Highlight

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

64   Chapter 2

view methods

When this line of code gets called, it creates a TextView object called
brands. You are then able to call methods on this TextView object.

Let’s say you wanted to set the text displayed in the brands text view
to “Gottle of geer”. The TextView class includes a method called
setText() that you can use to change the text property. You use it like
this:

Once you have a view, you can access its
methods
The findViewById() method provides you with a Java version of your
GUI component. This means that you can get and set properties in the
GUI component using the methods exposed by the Java class. Let’s take a
closer look.

brands.setText("Gottle of geer");
Set the text on the brands
TextView to “Gottle of geer”.

This gives you a Spinner object whose methods you can now access.
As an example, here’s how you retrieve the currently selected item in the
spinner, and convert it to a String:

The code:

String.valueOf(color.getSelectedItem()) This gets the selected item in the
spinner and converts it to a String.

Create project
Update layout
Connect activity
Write logic

Setting the text in a text view
As you’ve seen, you can get a reference to a text view in Java using:

TextView brands = (TextView) findViewById(R.id.brands);

Retrieving the selected value in a spinner
You can get a reference to a spinner in a similar way to how you get a
reference to a text view. You use the findViewById() method as
before, but this time you cast the result as a spinner:

Spinner color = (Spinner) findViewById(R.id.color);

color.getSelectedItem()

actually returns a generic Java object. This is because spinner values
can be something other than Strings, such as images. In our case, we
know the values are all Strings, so we can use String.valueOf() to
convert the selected item from an Object to a String.

you are here 4   65

building interactive apps

Activity Magnets
Somebody used fridge magnets to write a new onClickFindBeer()
method for us to slot into our activity. Unfortunately, a freak kitchen whirlwind
has dislodged the magnets. Can you piece the code back together again?

The code needs to retrieve the type of beer selected in the spinner, and then
display the type of beer in the text view.

TextView

(TextView)

findViewById

R.id.brands

color

(Spinner)

findViewById

R.id.color

View

beerTypegetSelectedItem()

//Called when the button gets clicked

public void onClickFindBeer(view) {

 //Get a reference to the TextView

 brands = ();

 //Get a reference to the Spinner

 Spinner = ();

 //Get the selected item in the Spinner

 String = String.valueOf(color.);

 //Display the selected item

 brands. (beerType);

}

setText

Button

findView

findView

R.view.brands

R.view.color

You won’t
need to use
all of the
magnets.

Update the activity code
You now know enough to write some code in the onClickFindBeer()
method. Rather than write all the code we need in one go, let’s start by
reading the selected value from the spinner, and displaying it in the text view.

Connect activity

66   Chapter 2

magnets solution

//Called when the button gets clicked

public void onClickFindBeer(view) {

 //Get a reference to the TextView

 brands = ();

 //Get a reference to the Spinner

 Spinner = ();

 //Get the selected item in the Spinner

 String = String.valueOf(color.);

 //Display the selected item

 brands. (beerType);

}

Activity Magnets Solution
Somebody used fridge magnets to write a new
onClickFindBeer() method for us to slot into our activity.
Unfortunately, a freak kitchen whirlwind has dislodged the magnets.
Can you piece the code back together again?

The code needs to retrieve the type of beer selected in the spinner,
and then display the type of beer in the text view.

TextView (TextView) findViewById R.id.brands

color (Spinner) findViewById R.id.color

View

beerType getSelectedItem()

setText

Button

findView

findView

R.view.brands

R.view.color

You didn’t need to use
these magnets.

you are here 4   67

building interactive apps

The first version of the activity
Our cunning plan is to build the activity in stages and test it as we go
along. In the end, the activity will take the selected value from the
spinner, call a method in a custom Java class, and then display matching
types of beer. For this first version, our goal is just to make sure that we
correctly retrieve the selected item from the spinner.

Here is our activity code, including the method you pieced together on
the previous page. Apply these changes to FindBeerActivity.java, then save
them:

package com.hfad.beeradviser;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Spinner;

import android.widget.TextView;

public class FindBeerActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_find_beer);

 }

 //Called when the button gets clicked

 public void onClickFindBeer(View view) {

 //Get a reference to the TextView

 TextView brands = (TextView) findViewById(R.id.brands);

 //Get a reference to the Spinner

 Spinner color = (Spinner) findViewById(R.id.color);

 //Get the selected item in the Spinner

 String beerType = String.valueOf(color.getSelectedItem());

 //Display the selected item

 brands.setText(beerType);

 }

}

findViewById returns a
View. You need to cast it
to the right type of View.

getSelectedItem returns
an Object. You need to
turn it into a String.

Create project
Update layout
Connect activity
Write logic

app/src/main

FindBeerActivity.java

BeerAdviser

java

com.hfad.beeradviser

We're using these
extra classes so we
need to import them.

We've not changed this method.

lenovo
Rectangle

68   Chapter 2

what happens

What the code does
Before we take the app for a test drive, let’s look at what the code
actually does.

The layout specifies which method in the activity should be called when the button is clicked via the
button’s android:onClick property.

The activity gets references to the Spinner and TextView GUI components using calls
to the findViewById() method.

2

The activity retrieves the currently selected value of the spinner (in this case amber),
and converts it to a String.

3

The activity then sets the text property of the TextView to reflect the currently
selected item in the spinner.

4

<Layout>

</Layout>

FindBeerActivityLayout

Spinner

TextView

FindBeerActivity

SpinnerFindBeerActivity
amber

TextViewFindBeerActivity

"amber"

Create project
Update layout
Connect activity
Write logic

The user chooses a type of beer from the spinner and clicks on the Find Beer button.
This calls the public void onClickFindBeer(View) method in the activity.

1

you are here 4   69

building interactive apps

Test drive the changes
Make the changes to the activity file, save it, and then run
your app. This time when we click on the Find Beer button, it
displays the value of the selected item in the spinner.

Q: I added a String to my strings.xml file, but I can’t see it
in R.java. Why isn’t it there?

A: Android Studio, generates R.java when you save any
changes you’ve made. If you’ve added a resource but can’t see it in
R.java, check that your changes have been saved.

R.java also gets updated when the app gets built. The app builds
when you run the app, so running the app will also update R.java.

Q: The values in the spinner look like they’re static as
they’re set to the values in the string-array. Can I
change these values programmatically?

A: You can, but that approach is more complicated than just
using static values. We’ll show you later in the book how you can
have complete control over the values displayed in components
such as spinners.

Q: What type of object is returned by
getSelectedItem()?

A: It’s declared as type Object. Because we used a
string-array for the values, the actual value returned in
this case is a String.

Q: What do you mean “in this case”—isn’t it always?

A: You can do more complicated things with spinners than just
display text. As an example, the spinner might display an icon next
to each value. As getSelectedItem() returns an object,
it gives you a bit more flexibility than just returning a String.

Q: Does the name of onClickFindBeer matter?

A: All that matters is that the name of the method in the activity
code matches the name used in the button’s onClick attribute
in the layout.

Q: Why did we have to replace the activity code that
Android Studio created for us?

A: IDEs such as Android Studio include functions and utilities
that can save you a lot of time. They generate a lot of code for
you, and sometimes this can be useful. But when you’re learning a
new language or development area such as Android, we think it’s
best to learn about the fundamentals of the language rather than
what the IDE generates for you. This way you’ll develop a greater
understanding of the language.

The type of
beer selected
is displayed in
the text view.

Connect activity

lenovo
Rectangle

70   Chapter 2

BeerExpert

Build the custom Java class
As we said at the beginning of the chapter, the Beer Adviser app
decides which beers to recommend with the help of a custom
Java class. This Java class is written in plain old Java, with no
knowledge of the fact it’s being used by an Android app.

package com.hfad.beeradviser;

import java.util.ArrayList;

import java.util.List;

public class BeerExpert {

 List<String> getBrands(String color) {

 List<String> brands = new ArrayList<>();

 if (color.equals("amber")) {

 brands.add("Jack Amber");

 brands.add("Red Moose");

 } else {

 brands.add("Jail Pale Ale");

 brands.add("Gout Stout");

 }

 return brands;

 }

}

Custom Java class spec
The custom Java class should meet the following requirements:

Build and test the Java class
Java classes can be extremely complicated and involve calls to complex
application logic. You can either build and test your own version of the
class, or use our sophisticated version of the class shown here:

�The package name should be com.hfad.beeradviser.¥
�The class should be called BeerExpert.¥
�It should expose one method, getBrands(), that takes a
preferred beer color (as a String), and return a List<String> of
recommended beers.

¥

This is pure Java code;
nothing Androidy about it.

<Layout>

</Layout> <resources>

</resources>

BeerExpert

Activity

Layout

strings.xml

We need to create
a Java class that
the activity can
use to find out
which beer brands
to suggest.

Add the BeerExpert class to your
project. Select the com.hfad.beeradviser
package in the app/src/main/java folder,
go to File→New...→Java Class, name the
file “BeerExpert”, and make sure the
package name is “com.hfad.beeradviser”.
This creates the BeerExpert.java file.

Do this!

app/src/main

BeerExpert.java

BeerAdviser

java

com.hfad.beeradviser

you are here 4   71

building interactive apps

Enhance the activity to call the custom
Java class so that we can get REAL advice

Enhance the activity so that it calls the BeerExpert
getBrands() method and displays the results in the text view.

In version two of the activity we need to enhance the onClickFindBeer() method
to call the BeerExpert class for beer recommendations. The code changes needed
are plain old Java. You can try to write the code and run the app on your own, or you
can follow along with us. But before we show you the code changes, try the exercise
below; it’ll help you create some of the activity code you’ll need.

package com.hfad.beeradviser;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Spinner;
import android.widget.TextView;
import java.util.List;

public class FindBeerActivity extends Activity {
 private BeerExpert expert = new BeerExpert();
...
 //Called when the button gets clicked
 public void onClickFindBeer(View view) {
 //Get a reference to the TextView
 TextView brands = (TextView) findViewById(R.id.brands);
 //Get a reference to the Spinner
 Spinner color = (Spinner) findViewById(R.id.color);
 //Get the selected item in the Spinner
 String beerType = String.valueOf(color.getSelectedItem());
 //Get recommendations from the BeerExpert class

 }
}

We added this line for you.

You’ll need to use the BeerExpert
class to get the beer recommendations,
so we added this line for you too.

You need to update the onClickFindBeer() method.

Create project
Update layout
Connect activity
Write logic

72   Chapter 2

17

sharpen solution

Enhance the activity so that it calls the BeerExpert
getBrands() method and displays the results in the text view.

package com.hfad.beeradviser;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Spinner;
import android.widget.TextView;
import java.util.List;

public class FindBeerActivity extends Activity {
 private BeerExpert expert = new BeerExpert();
...
 //Called when the button gets clicked
 public void onClickFindBeer(View view) {
 //Get a reference to the TextView
 TextView brands = (TextView) findViewById(R.id.brands);
 //Get a reference to the Spinner
 Spinner color = (Spinner) findViewById(R.id.color);
 //Get the selected item in the Spinner
 String beerType = String.valueOf(color.getSelectedItem());
 //Get recommendations from the BeerExpert class

 }
}

 List<String> brandsList = expert.getBrands(beerType);
 StringBuilder brandsFormatted = new StringBuilder();
 for (String brand : brandsList) {
 brandsFormatted.append(brand).append('\n');
 }
 //Display the beers
 brands.setText(brandsFormatted);

Using the BeerExpert requires pure Java code, so don’t
worry if your code looks a little different than ours.

Get a List of brands.

Build a String using
the values in the List.

Display each brand
on a new line.

Display the results in
the text view.

you are here 4   73

building interactive apps

Activity code version 2
Here’s our full version of the activity code. Apply the changes shown
here to your version of FindBeerActivity.java, make sure you’ve added
the BeerExpert class to your project, and then save your changes:

package com.hfad.beeradviser;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Spinner;

import android.widget.TextView;

import java.util.List;

public class FindBeerActivity extends Activity {

 private BeerExpert expert = new BeerExpert();

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_find_beer);

 }

 //Called when the button gets clicked

 public void onClickFindBeer(View view) {

 //Get a reference to the TextView

 TextView brands = (TextView) findViewById(R.id.brands);

 //Get a reference to the Spinner

 Spinner color = (Spinner) findViewById(R.id.color);

 //Get the selected item in the Spinner

 String beerType = String.valueOf(color.getSelectedItem());

 //Get recommendations from the BeerExpert class
 List<String> brandsList = expert.getBrands(beerType);
 StringBuilder brandsFormatted = new StringBuilder();
 for (String brand : brandsList) {
 brandsFormatted.append(brand).append('\n');
 }
 //Display the beers
 brands.setText(brandsFormatted);
 brands.setText(beerType);

 }

}

Create project
Update layout
Connect activity
Write logic

app/src/main

FindBeerActivity.java

BeerAdviser

java

com.hfad.beeradviser
We're using this extra class so we need to import it.

Add an instance of BeerExpert as a private variable.

Use the BeerExpert class to get a List of brands.

Build a String, displaying
each brand on a new line.

Display the String in the TextView.

Delete this line.

74   Chapter 2

what happens

When the user clicks on the Find Beer button, the
onClickFindBeer() method in the activity gets called.
The method creates a reference to the spinner and text view, and gets the
currently selected value from the spinner.

1

What happens when you run the code

onClickFindBeer() calls the getBrands() method in the
BeerExpert class, passing in the type of beer selected in the
spinner.
The getBrands() method returns a list of brands.

2

The onClickFindBeer() method formats the list of brands and
uses it to set the text property in the text view.

<Layout>

</Layout>

FindBeerActivityLayout
Spinner

FindBeerActivity BeerExpert

getBrands("amber")

"Jack Amber"
"Red Moose"

FindBeerActivity TextView

"Jack Amber
Red Moose"

amber

TextView

onClickFindBeer()

onClickFindBeer()

onClickFindBeer()

3

you are here 4   75

building interactive apps

This is what you get
when you select light.

Test drive your app
Once you’ve made the changes to your app, go ahead
and run it. Try selecting different types of beer and
clicking on the Find Beer button.

Create project
Update layout
Connect activity
Write logic

This is what you get
when you select amber.

When you choose different types of beer and
click on the Find Beer button, the app uses the
BeerExpert class to provide you with a selection
of suitable beers.

76   Chapter 2

toolbox

�� The <Button> element is used to add a button.

�� The <Spinner> element is used to add a spinner,
which is a drop-down list of values.

�� All GUI components are types of view. They inherit from
the Android View class.

�� strings.xml is a String resource file. It’s used to separate
out text values from the layouts and activities, and
supports localization.

�� Add a String to strings.xml using:

 <string name="name">Value</string>

�� Reference a String in the layout using:

 "@string/name"

�� Add an array of String values to strings.xml using:

 <string-array name="array">
 <item>string1</item>
 ...
 </string-array>

�� Reference a string-array in the layout using:

 "@array/array_name"

�� Make a button call a method when clicked by adding the
following to the layout:

 android:onClick="clickMethod"

There needs to be a corresponding method in the
activity:

 public void clickMethod(View view){
 }

�� R.java is generated for you. It enables you to get
references for layouts, GUI components, Strings, and
other resources in your Java code.

�� Use findViewById() to get a reference to a view.

�� Use setText() to set the text in a view.

�� Use getSelectedItem() to get the selected item
in a spinner.

�� Add a custom class to an Android project by going to
File menu→New...→Java Class.

Your Android Toolbox

You’ve got Chapter 2 under
your belt and now you’ve

added building interactive
Android apps to your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

CH
AP

T
ER

 2

	1: getting started
	2: building interactive apps

